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ABSTRACT

Symplectic N-body integrators are widely used to study problems in celestial me-
chanics. The most popular algorithms are of 2nd and 4th order, requiring 2 and 6
substeps per timestep, respectively. The number of substeps increases rapidly with
order in timestep, rendering higher-order methods impractical. However, symplectic
integrators are often applied to systems in which perturbations between bodies are a
small factor ε of the force due to a dominant central mass. In this case, it is possible to
create optimized symplectic algorithms that require fewer substeps per timestep. This
is achieved by only considering error terms of order ε, and neglecting those of order
ε2, ε3 etc. Here we devise symplectic algorithms with 4 and 6 substeps per step which
effectively behave as 4th and 6th-order integrators when ε is small. These algorithms
are more efficient than the usual 2nd and 4th-order methods when applied to planetary
systems.

Subject headings: celestial mechanics, stellar dynamics—methods: n-body simulations—
methods: numerical

1. Introduction

Symplectic integrators are widely used to study problems in celestial mechanics. These inte-
grators have two advantages over most other algorithms. First, they exhibit no long-term build up
in energy error. Second, the motion of each object about the central body can be “built in”, so that
the choice of step size, τ , is determined by the perturbations between bodies, whose magnitude is
a factor ε smaller than the forces due to the central body ((Wisdom and Holman 1991)).

The most popular algorithm is the second-order symplectic integrator. The error at each step
is proportional to ετ3, so that the likely error for an integration as a whole is ∼ ετ2. The second-
order method is easy to implement, consisting of only two substeps, including one force evaluation,
per time step. It is also very fast for integrations requiring moderate accuracy.
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For more accurate integrations, it is better to use the fourth-order method ((Forest and Ruth 1990)).
Here, the error at each step is proportional to ετ5, although each step is computationally more ex-
pensive since it consists of 6 substeps. Yoshida (1990) has developed 6th and 8th-order symplectic
integrators. However, these do not appear to be competitive in most situations, due to the large
number of substeps required.

Here we show how to construct what are effectively high-order (4th, 6th etc.) symplectic
integrators that require fewer substeps per time step than those in current use. The trick is to take
into account the dependence of each error term on ε when choosing the coefficients for each substep.
The algorithms are designed by eliminating error terms proportional to ε up to the desired order
of the timestep. Error terms proportional to ε2, ε3 etc., in low orders of the timestep, still exist.
However, in many situations these terms are negligible, and the integrators behave as if they are
of higher order than the leading error term in τ suggests.

Section 2 gives a quick review of how symplectic integrators are traditionally constructed using
Lie algebra. In Section 3, we show how to build more efficient symplectic algorithms using fewer
substeps. Section 4 contains results of test integrations that compare the new algorithms with
traditional symplectic integrators.

2. Symplectic Integrators

Symplectic integrators for the N-body problem can be constructed starting from Hamilton’s
equations of motion:

dxi

dt
=

∂H

∂pi

dpi

dt
= −∂H

∂xi
(1)

where xi and pi are the coordinates and momenta of each body respectively, and H is the Hamil-
tonian of the system.

Using these equations, the rate of change of any dynamical quantity q(x,p, t) can be expressed
as

dq

dt
=

3N∑
i=1

(
∂q

∂xi

∂H

∂pi
− ∂q

∂pi

∂H

∂xi

)
≡ {q,H} ≡ Fq (2)

where {, } are Poisson brackets, and F is a differential operator.

The formal solution of equation (2) is

q(t) = eτF q(t − τ) =
(
1 + τF +

τ2F 2

2
+ . . .

)
q(t − τ)

where F 2q = F (Fq) etc.
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Now suppose that we are able to split the Hamiltonian into two pieces, HA and HB, so that
each part of the problem can be solved relatively easily in the absence of the other. The solution
for q becomes

q(t) = eτ(A+B)q(t − τ) (3)

where A and B are differential operators related to HA and HB respectively, in the same way that
F is related to H.

The Baker-Campbell-Hausdorff (BCH) formula states that, for any noncommutative operators
A and B,

exp(A) · exp(B) = exp(C)

where C is a series consisting of nested commutators,

C = A + B +
1
2
[A,B] +

1
12

[A,A,B] +
1
12

[B,B,A] + · · ·

where the commutator [A,B] = AB −BA �= 0 in general (see, for example, Yoshida 1990 or Forest
and Ruth 1990). Here, we have used the nested commutator notation [A,B,C] = [A, [B,C]], etc..

Hence, if we evolve q under the two parts of the Hamiltonian separately, one after the other,
we have

exp(τA) · exp(τB)q(t − τ) = exp
[
τF +

τ2

2
[A,B] + · · ·

]
q(t − τ) (4)

This is identical to the righthand side of equation (3) to O(τ), and so equation (4) represents a
first-order integrator. Each step of the integrator consists of 2 substeps, with the whole step giving
an error of O(τ2). Alternatively, we can say that the integrator exactly solves a problem whose
Hamiltonian is given by

Hinteg = H +
τ

2
{HB ,HA}+ O(τ2)

(see, for example, (Saha and Tremaine 1992)). Provided that τ is small, and {HB,HA} remains
bounded, the energy of the integrated system will always be near to that of the real system.

Other integrators can be found by combining exponential operators in such a way that they
are equivalent to equation (3) up to a given order in τ . For example, we have the second-order
symplectic integrator

S2A = exp
(τ

2
A

)
· exp(τB) · exp

(τ

2
A

)

= exp
[
τF +

τ3

12
[B,B,A]− τ3

24
[A,A,B] + . . .

]

When many integration steps are performed one after another, the exp(τA/2) terms at the end of
one step and the start of another can be combined. Hence, the second-order integrator also consists
of only 2 substeps, except at the beginning and the end of an integration.
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Another second-order integrator is

S2B = exp
(τ

2
B

)
· exp(τA) · exp

(τ

2
B

)

= exp
[
τF +

τ3

12
[A,A,B]− τ3

24
[B,B,A] + . . .

]
(5)

The distinction between S2A and S2B (which at first sight appear to be the same) will become
apparent in the next section, when we consider situations in which A and B are of different mag-
nitude.

Forest and Ruth (1990) give a fourth-order symplectic integrator with 6 substeps per step:

S4B = exp
(

τB

2c

)
· exp

(
τA

c

)
· exp

[
τB(1− k)

2c

]
· exp

(−τkA

c

)
· exp

[
τB(1− k)

2c

]

· exp
(

τA

c

)
· exp

(
τB

2c

)

= exp[τF + O(τ5)]

where k = 21/3 and c = 2− k. Note that the middle 3 substeps move in the opposite direction to
the integration as a whole.

Higher-order integrators require progressively more substeps. Yoshida (1990) gives examples
of 6th and 8th-order integrators using 14 and 30 substeps respectively. In the next section, we will
show how to create what are effectively 4th and 6th order integrators (and in principle, 8th-order
etc.) using fewer substeps than are required conventionally.

3. Constructing Pseudo-Order Integrators

Up to this point we have not considered the details of how H is split. Suppose that one part of
the Hamiltonian is much smaller than the other, i.e. H = HA + εHB , where ε � 1. Now consider
the error terms in the second-order integrator of equation (5):

S2B = exp
[
τF +

ετ3

12
[A,A,B] − ε2τ3

24
[B,B,A] + · · ·

]

One of the O(τ3) error terms is smaller than the other by a factor of ε.

Similarly, for the fourth order integrator:

S4B = exp[τF + O(ετ5) + O(ε2τ5) + O(ε3τ5) + O(ε4τ5)]

Some of these error terms are insignificant compared to others, and yet this was not taken into
account when constructing the integrator. The only design criterion was that S4B should contain
no error terms below the fifth power in the timestep. If we take into account the dependence of the
error terms on both τ and ε, we can design more efficient symplectic integrators.
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To construct the new integrators, we again employ the BCH formula. Adapting the expression
for the BCH formula given by Yoshida (1990), we have:

exp(a1τA) · exp(b1ετB)

= exp
[
(a1A + εb1B)τ + ετ2

(
a1b1

2

)
[A,B] + ετ3

(
a2

1b1

12

)
[A,A,B] + ε2τ3

(
a1b

2
1

12

)
[B,B,A]

+ ε2τ4

(
a2

1b
2
1

24

)
[A,B,B,A]− ετ5

(
a4

1b1

720

)
[A,A,A,A,B] − ε4τ5

(
a1b

4
1

720

)
[B,B,B,B,A] + · · ·

]

where a1 and b1 are constants. Additional fifth-order commutators are present; however, we will
only require terms that contain either A or B once, since these are the type of error term we are
seeking to eliminate.

Applying the BCH formula twice, Yoshida (1990) gives an expression for a symmetric product
of three exponential operators:

exp(b1ετB) · exp(a1τA) · exp(b1ετB)

= exp
[
(a1A + 2εb1B)τ + ετ3

(
a2

1b1

6

)
[A,A,B] − ε2τ3

(
a1b

2
1

6

)
[B,B,A]

− ετ5

(
a4

1b1

360

)
[A,A,A,A,B] + ε4τ5

(
7a1b

4
1

360

)
[B,B,B,B,A] + · · ·

]
(6)

Again we have neglected fifth-order terms that contain both A and B more than once. Note that
there are no terms containing even powers of the timestep: Yoshida shows that this is a general
property of any symmetric arrangement of exponential operators. From now on we will consider
only symmetrical integrators because of this property.

We need to extend equation (6) once more to get a pseudo-fourth order integrator, and twice
more for a pseudo-sixth order one. By substituting a2A for b1B in equation (6), and substituting
the righthand side of equation (6) for a1A, we get:

exp(a2τA) · exp(b1ετB) · exp(a1τA) · exp(b1ετB) · exp(a2τA)

= exp
{
(a1 + 2a2)τA + 2b1ετB + ετ3

(
b1

6

)
[(a1 + 2a2)2 − 6a2(a1 + a2)] [A,A,B]

+ ε2τ3

(
b2
1

6

)
(4a2 − a1) [B,B,A]− ετ5

(
b1

360

)
[(a1 + 2a2)4 − 30a2

2(a1 + a2)2] [A,A,A,A,B]

− ε4τ5

(
b4
1

360

)
(16a2 − 7a1) [B,B,B,B,A] + · · ·

}
(7)

Finally, substituting the righthand side of equation (7) for a1A in equation (6), and replacing
b1B with b2B, we arrive at

exp(b2ετB) · exp(a2τA) · exp(b1ετB) · exp(a1τA) · exp(b1ετB) · exp(a2τA) · exp(b2ετB)
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= exp
{
(a1 + 2a2)τA + 2(b1 + b2)ετB + ετ3

[
(b1 + b2)(a1 + 2a2)2 − 6a2b1(a1 + a2)

6

]
[A,A,B]

− ε2τ3

[
(a1 + 2a2)(b1 + b2)2 − 6a2b

2
1

6

]
[B,B,A]

− ετ5

[
(b1 + b2)(a1 + 2a2)4 − 30a2

2b1(a1 + a2)2

360

]
[A,A,A,A,B]

+ ε4τ5

[
7(a1 + 2a2)(b1 + b2)4 − 60a2b

2
1(b1 + b2)2 + 30a2b

4
1

360

]
[B,B,B,B,A] + · · ·

}
(8)

The first stage in converting these general expressions into specific integrators is to make the
coefficients of the linear A and B terms equal to 1. This places two constraints on the values of
the constants. We can then get what is effectively a 4th-order integrator by simply eliminating
the [A,A,B] term from equation (7). The leading error terms will now be O(ε2τ3) and O(ετ5).
Provided that ε is small enough, the largest error term will be O(ετ5), and the integrator effectively
will be of fourth order in the timestep. Applying these conditions, we require

a1 + 2a2 = 1

2b1 = 1

1− 6a2(1− a2) = 0 (9)

where we have used the first two of equations (9) in deriving the third.

Alternatively, we may construct an integrator in which each step begins by advancing HB

instead of HA. Unlike conventional symplectic integrators, such as S2A and S2B, we cannot
use the same set of coefficients when exchanging A and B. Instead, we must derive a new set of
coefficients by interchanging A and εB in equation (7) and then eliminating the new [A,A,B] term.
When we do this, the first two of equations (9) remain as before, but the third expression becomes

6a2 − 1 = 0 (10)

To get a pseudo-6th-order integrator, we eliminate terms containing [A,A,B] and [A,A,A,A,B].
This will produce an extra constraining equation, so we need an extra constant. We get this by
using an integrator with the form of equation (8) instead of equation (7). The corresponding
equations for the constants are

a1 + 2a2 = 1

2(b1 + b2) = 1

1/2− 6a2b1(1− a2) = 0

1/2− 30a2
2b1(1− a2)2 = 0 (11)

If we prefer an integration step that begins by advancing HA, we can interchange A and εB in
equation (8), and eliminate the new [A,A,B] and [A,A,A,A,B] terms. In this case, the last two
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of equations (11) become

1/4− 6a2b
2
1 = 0

7/16 − 15a2b
2
1 + 30a2b

4
1 = 0 (12)

The leading error terms for each of these integrators are O(ε2τ3) and O(ετ7). The latter will
be dominant if ε is small enough, so that the algorithms behave as 6th-order integrators.

3.1. Pseudo-4th and 6th-Order Examples

Solving equations (9) and (10), we obtain two pseudo-4th-order integrators:

S4A∗ = exp
[
τA

2

(
1− 1√

3

)]
· exp

(
ετB

2

)
· exp

(
τA√
3

)
· exp

(
ετB

2

)
· exp

[
τA

2

(
1− 1√

3

)]

= exp
[
τF + ε2τ3

(
2−√

3
24

)
[B,B,A]− ετ5

4320
[A,A,A,A,B] + · · ·

]

S4B∗ = exp
(

ετB

6

)
· exp

(
τA

2

)
· exp

(
2ετB

3

)
· exp

(
τA

2

)
· exp

(
ετB

6

)

= exp
[
τF +

ε2τ3

72
[B,B,A] +

ετ5

2880
[A,A,A,A,B] + · · ·

]

where the asterisk in S4A* indicates that it only behaves as a 4th order integrator for certain values
of τ .

Equations 11 and 12 give two pseudo-6th-order integrators:

S6A∗ = exp
[
τA

2

(
1− 3√

15

)]
· exp

(
5ετB

18

)
· exp

(
3τA

2
√
15

)
· exp

(
4ετB

9

)
· exp

(
3τA

2
√
15

)

· exp
(
5ετB

18

)
· exp

[
τA

2

(
1− 3√

15

)]

= exp
[
τF + ε2τ3

(
54− 13

√
15

648

)
[B,B,A] + O(ετ7)

]

S6B∗ = exp
(

ετB

12

)
· exp

[
τA

2

(
1− 1√

5

)]
· exp

(
5ετB

12

)
· exp

(
τA√
5

)
· exp

(
5ετB

12

)

· exp
[
τA

2

(
1− 1√

5

)]
· exp

(
ετB

12

)

= exp
[
τF + ε2τ3

(
13− 5

√
5

288

)
[B,B,A] + O(ετ7)

]

McLachlan (1995) has independently derived similar solutions.
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Unlike the 4th-order algorithm of Forest and Ruth (1990) and the 6th-order integrators of
Yoshida (1990), the algorithms above contain no substeps that move in the opposite direction to
the main integration. An additional solution exists for each of equations (9), (11) and (12), however
these have error terms with larger numerical coefficients than the integrators we show here.

The same method can be used to generate a pseudo-8th-order integrator and so on. Each higher
order will require only 2 more substeps than the previous one, since only one more commutator
needs to be eliminated in each case. For example, to create a pseudo-8th-order integrator requires
the elimination of the [A,A,A,A,A,A,B] term in addition to those that are absent from the
pseudo-6th-order case. However, depending on the system to be integrated, there will come a point
at which the ε2τ3 error term becomes the most important. In principle, one could devise another
set of integrators that eliminates terms in ε2τm for small m, in addition to terms in ετm. However,
achieving each new order will generally require the elimination of more than one commutator term,
so that these integrators increase in complexity much more rapidly than those described here.

Murison and Chambers (1999) have independently derived the two 4th-order integrators above,
among others, using a symbolic algebra package. Further results from that approach will follow
in another paper. We note that the pseudo-order algorithms can be adapted to use indepen-
dent timesteps for each planet (c.f. (Saha and Tremaine 1994)), or to include close encounters
((Duncan et al. 1998; Chambers 1999)).

4. Numerical Comparisons

In this section, we test the pseudo-4th and 6th order integrators derived in Section 3 against
the well-known 2nd and 4th-order symplectic algorithms. We use the “mixed-variable” method
of Wisdom and Holman (1991), in which the Hamiltonian is divided into a Keplerian part, HK ,
and an interaction part, HI . Under HK , each object moves on an unperturbed Keplerian orbit
about the central body. Under HI , each object remains fixed while receiving an impulse due to
the gravitational perturbations of all the other objects except the central body. As suggested
by Wisdom and Holman, we use Jacobi coordinates rather than barycentric coordinates. The
integrations themselves were carried out using a modified version of the Mercury integrator package
((Chambers and Migliorini 1997)).

The pseudo-order integrators require that the ratio ε = HI/HK � 1. In our first test, we
integrate the orbits of the 4 inner planets of the solar system in the absence of the outer planets.
In this case ε ∼ 10−5. Figure 1 shows the results of a 10000-year integration using the conventional
2nd and 4th-order symplectic integrators, S2B and S4B, and the pseudo-order integrators S4B*
and S6B*. For each integration, the maximum relative energy error is shown as a function of the
step size.

For the 2nd and 4th-order integrators, the maximum energy error is roughly proportional to
τ2 and τ4 respectively, where τ is the timestep. This is what we would expect to find. For the
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Fig. 1.— Maximum relative energy error versus step size for a 10000-year integration of the 4
terrestrial planets using various symplectic integrators.

Fig. 2.— Maximum relative energy error versus CPU time for a 10000-year integration of the 4
terrestrial planets using various symplectic integrators.
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Fig. 3.— Maximum relative energy error versus step size for a 10000-year integration of the 9
planets using various symplectic integrators.

Fig. 4.— Maximum relative energy error versus CPU time for a 10000-year integration of the 9
planets using various symplectic integrators.
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pseudo-4th and 6th-order integrators, the maximum energy error varies as τ4 and τ6. That is, they
behave as 4th and 6th-order integrators, as we anticipated, despite the fact that they contain error
terms of lower order in the timestep.

Using the mean relative energy error per integration instead of the maximum error gives results
similar to Figure 1. The corresponding slopes are 2.10 ± 0.05 for S2B, 3.9± 0.3 for S4B, 4.6 ± 0.3
for S4B* and 6.4± 0.4 for S6B*.

Figure 2 shows the amount of CPU time required for the integrations shown in Figure 1. For
energy errors of 1 part in 106 or 108 there is not much to choose between the four algorithms. For
higher levels of accuracy, S4B outperforms S2B. However, the pseudo integrators S4B* and S6B*
do even better. At an accuracy of 1 part in 1010, they are roughly an order of magnitude faster
than the conventional second-order integrator, and 3 times faster than the 4th-order integrator.
For accuracies of better than 10−11, S6B* shows greater performance than S4B*.

The pseudo-4th order integrator is more efficient than the real 4th-order integrator for two
reasons. It requires fewer substeps per time step, and it has a slightly smaller leading error term.

As a more interesting test, we integrated the whole planetary system (Mercury to Pluto) for
10000 years. Figure 3 shows the energy-error results of these integrations. The behaviour of S2B,
S4B and S4B* is similar to that for the integrations of the terrestrial planets. However, the energy
error for S6B* varies roughly as τ5 rather than τ6. It is not obvious why this should be, although
the difference from the terrestrial-planet integration (Figure 1) is presumably due to the fact that
ε is two orders of magnitude larger in this case.

Figure 4 shows the CPU time required for the integrations of the 9 planets. The results are
similar to the integration of the inner planets, except that S6B* has only a marginal advantage
over S4B* at the highest levels of accuracy.

Since writing the original draft of this manuscript, we have become aware of the symplectic
corrector method of Wisdom et al. (1996), which substantially improves the efficiency of the second-
order symplectic integrator. We present the pseudo-order integrators as an alternative strategy for
designing accurate algorithms. It is possible to devise other symplectic correctors using the same
approach we use in Section 3 to design the integrator kernel: that is, by considering the dependence
of the resulting error terms on ε as well as τ ((Mikkola 1997; Rauch and Holman 1999)). Finally
we suggest that it may be possible to design symplectic correctors to improve the performance of
pseudo-order algorithms, since the pseudo-order methods exhibit similar high-frequency oscillations
in energy error to the second and 4th-order symplectic integrators (see Figure 5).

In summary, we conclude that the new pseudo-order integrators outperform the widely-used
2nd and 4th-order algorithms at all reasonable values of the energy error, for problems involving a
dominant central mass.

Research at Armagh Observatory is grant-aided by the Dept. of Education, Northern Ireland.



– 12 –

Fig. 5.— Relative energy error versus time for 10000-year integrations of the 9 planets using various
symplectic integrators.
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The test integrations described in this paper were carried out using computers purchased on a
PPARC research grant.
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Figure Captions

Figure 1: Maximum relative energy error versus step size for a 10000-year integration of the 4
terrestrial planets using various symplectic integrators.

Figure 2: Maximum relative energy error versus CPU time for a 10000-year integration of the 4
terrestrial planets using various symplectic integrators.

Figure 3: Maximum relative energy error versus step size for a 10000-year integration of the 9
planets using various symplectic integrators.

Figure 4: Maximum relative energy error versus CPU time for a 10000-year integration of the 9
planets using various symplectic integrators.

Figure 5: Relative energy error versus time for 10000-year integrations of the 9 planets using
various symplectic integrators.
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